python中的协程

开始总是分分钟都妙不可言 谁都以为热情它永不会减。

协程,又称微线程,纤程。英文名Coroutine。
子程序,或者称为函数,在所有语言中都是层级调用,比如A调用B,B在执行过程中又调用了C,C执行完毕返回,B执行完毕返回,最后是A执行完毕。

所以子程序调用是通过栈实现的,一个线程就是执行一个子程序。

子程序调用总是一个入口,一次返回,调用顺序是明确的。而协程的调用和子程序不同。

协程看上去也是子程序,但执行过程中,在子程序内部可中断,然后转而执行别的子程序,在适当的时候再返回来接着执行。

简单说明

注意,在一个子程序中中断,去执行其他子程序,不是函数调用,有点类似CPU的中断。比如子程序A、B:

1
2
3
4
5
6
7
8
9
def A():
print('1')
print('2')
print('3')

def B():
print('x')
print('y')
print('z')

假设由协程执行,在执行A的过程中,可以随时中断,去执行B,B也可能在执行过程中中断再去执行A,结果可能是:

1
2
3
4
5
6
1
2
x
y
3
z

但是在A中是没有调用B的,所以协程的调用比函数调用理解起来要难一些。

优势

最大的优势就是协程极高的执行效率。因为子程序切换不是线程切换,而是由程序自身控制,因此,没有线程切换的开销,和多线程比,线程数量越多,协程的性能优势就越明显。

第二大优势就是不需要多线程的锁机制,因为只有一个线程,也不存在同时写变量冲突,在协程中控制共享资源不加锁,只需要判断状态就好了,所以执行效率比多线程高很多。

因为协程是一个线程执行,那怎么利用多核CPU呢?最简单的方法是多进程+协程,既充分利用多核,又充分发挥协程的高效率,可获得极高的性能。

例子

Python对协程的支持是通过generator实现的。

在generator中,我们不但可以通过for循环来迭代,还可以不断调用next()函数获取由yield语句返回的下一个值。

但是Python的yield不但可以返回一个值,它还可以接收调用者发出的参数。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
def consumer():
r = ''
while True:
n = yield r
if not n:
return
print('[消费者] Consuming %s...' % n)
r = '200 OK'

def produce(c):
c.send(None)
n = 0
while n < 5:
n = n + 1
print('[生产者] Producing %s...' % n)
r = c.send(n)
print('[生产者] Consumer return: %s' % r)
c.close()

c = consumer()
produce(c)

https://www.liaoxuefeng.com/wiki/0014316089557264a6b348958f449949df42a6d3a2e542c000/001432090171191d05dae6e129940518d1d6cf6eeaaa969000