Fork me on GitHub

缓存穿透与缓存雪崩


柔情似水,佳期如梦,忍顾鹊桥归路!
两情若是久长时,又岂在、朝朝暮暮!

缓存穿透

出现场景

查询一个一定不存在的数据,由于缓存是不命中时被动写的,并且出于容错考虑,如果从存储层查不到数据则不写入缓存,这将导致这个不存在的数据每次请求都要到存储层去查询,失去了缓存的意义。当在流量较大时,出现这样的情况,一直请求DB,很容易导致服务挂掉。

处理方法

  • 在封装的缓存SET和GET部分增加个步骤,如果查询一个KEY不存在,就已这个KEY为前缀设定一个标识KEY;以后再查询该KEY的时候,先查询标识KEY,如果标识KEY存在,就返回一个协定好的非false或者NULL值,然后APP做相应的处理,这样缓存层就不会被穿透。当然这个验证KEY的失效时间不能太长。
  • 如果一个查询返回的数据为空(不管是数据不存在,还是系统故障),我们仍然把这个空结果进行缓存,但它的过期时间会很短,一般只有几分钟。
  • 采用布隆过滤器,将所有可能存在的数据哈希到一个足够大的bitmap中,一个一定不存在的数据会被这个bitmap拦截掉,从而避免了对底层存储系统的查询压力。

缓存雪崩

出现场景

引起这个原因的主要因素是高并发下,我们一般设定一个缓存的过期时间时,可能有一些会设置5分钟啊,10分钟这些;并发很高时可能会出在某一个时间同时生成了很多的缓存,并且过期时间在同一时刻,这个时候就可能引发——当过期时间到后,这些缓存同时失效,请求全部转发到DB,DB可能会压力过重。

处理方法

一个简单方案就是将缓存失效时间分散开,不要所以缓存时间长度都设置成5分钟或者10分钟;比如我们可以在原有的失效时间基础上增加一个随机值,比如1-5分钟随机,这样每一个缓存的过期时间的重复率就会降低,就很难引发集体失效的事件。 缓存失效时产生的雪崩效应,将所有请求全部放在数据库上,这样很容易就达到数据库的瓶颈,导致服务无法正常提供。尽量避免这种场景的发生。

https://zhuanlan.zhihu.com/p/35060009?group_id=962606647398658048

请我喝一个苹果味的美年达吧,谢谢!